Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Front Immunol ; 14: 1269526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143741

RESUMO

Introduction: Serological tests can be used to test whether an animal has been exposed to an infectious agent, and whether its immune system has recognized and produced antibodies against it. Paired samples taken several weeks apart then document an ongoing infection and/or seroconversion. Methods: In the absence of a commercial kit, we developed an indirect enzyme-linked immunosorbent assay (ELISA) to detect the fungus-specific antibodies for Pseudogymnoascus destructans, the agent of white-nose syndrome in bats. Results and Discussion: Samples collected from European Myotis myotis (n=35) and Asian Myotis dasycneme (n=11) in their hibernacula at the end of the hibernation period displayed 100% seroprevalence of antibodies against P. destructans, demonstrating a high rate of exposure. Our results showed that the higher the titre of antibodies against P. destructans, the lower the infection intensity, suggesting that a degree of protection is provided by this arm of adaptive immunity in Palearctic bats. Moreover, P. destructans infection appears to be a seasonally self-limiting disease of Palearctic bats showing seroconversion as the WNS skin lesions heal in the early post-hibernation period.


Assuntos
Quirópteros , Micoses , Dermatopatias , Animais , Micoses/epidemiologia , Micoses/veterinária , Estudos Soroepidemiológicos , Síndrome
2.
Front Vet Sci ; 10: 1284025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808105

RESUMO

Background: Filarial infections have been understudied in bats. Likewise, little is known about pathogens associated with the reproductive system in chiropterans. While semen quality is critical for reproductive success, semen-borne pathogens may contribute to reproductive failure. Methods: For the first time we performed electroejaculation and used computer-assisted semen analysis to provide baseline data on semen quality in a parti-coloured bat (Vespertilio murinus). Results: The semen quality values measured in the V. murinus male appeared high (semen concentration = 305.4 × 106/mL; progressive and motile sperm = 46.58 and 60.27%, respectively). As an incidental finding, however, microfilariae were observed in the bat semen examined. At necropsy, eight adult filarial worms, later genetically identified as Litomosa sp., were found in the peritoneal cavity, close to the stomach, of the same particoloured bat male dying as a result of dysmicrobia and haemorrhagic gastroenteritis in a wildlife rescue centre. Histopathology revealed microfilariae in the testicular connective tissue and the epidydimal connective and fat tissues. A PCR assay targeting cytochrome c oxidase subunit 1 confirmed that adult worms from the peritoneal cavity and testicular microfilariae were of the same filarial species. Mildly engorged argasid mite larvae attached to the bat skin proved negative for filarial DNA and the adult filarial worms proved negative for endosymbiont Wolbachia. Conclusion: While the standard filarial life cycle pattern involves a vertebrate definitive host and an invertebrate vector, represented by a blood-sucking ectoparasite, our finding suggests that microfilariae of this nematode species may also be semen-borne, with transmission intensity promoted by the polygynous mating system of vespertilionid bats in which an infected male mates with many females during the autumn swarming. Presence of microfilariae may be expected to decrease semen quality and transmission via this route may challenge the success of reproductive events in females after mating. Further investigation will be necessary to better understand the bat-parasite interaction and the life cycle of this filarial worm.

3.
Pathogens ; 12(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37764897

RESUMO

During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.

4.
J Therm Biol ; 115: 103652, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37451039

RESUMO

Evolution of heterothermy in environments with variable temperatures has allowed bats to survive food scarcity during seasonal climatic extremes by using torpor as a hibernation strategy. The controlled reduction of body temperature and metabolism through complex behavioural and physiological adaptations at organismal, organ, cellular and molecular levels includes the ability of tissues and cells to adapt to temperature alterations. Based on the prediction that cells of different tissues cultured in vitro would differ in their ability to withstand freezing and thawing of the medium, we determined the survival rate of bat-derived cells following exposure to -20 °C for 24 h in media with no cryoprotective agents or medium supplemented by glucose in concentration range 0-3333 mM. Cell survival rates were determined in relation to availability of glucose in the medium, organ origin, cell concentration and bat species. In general, increased glucose helped cells survive at sub-zero temperatures, though concentrations up to 80-fold higher than those found in chiropterans were needed. However, cells in glucose-free phosphate buffered saline also survived, suggesting that other mechanisms may be contributing to cell survival at low temperatures. Highest in vitro viability was observed in nervus olfactorius-derived cell cultures, with high survival rates and rapid re-growth under optimal conditions after exposure to -20 °C. Kidney cells from different bat species showed comparable overall survival rate patterns, though smaller chiropteran species appeared to utilise lower glucose levels as a cryoprotectant than larger species. Our in vitro data provide evidence that cells of heterothermic bats can survive sub-zero temperatures and that higher glucose levels in important tissues significantly improve hibernation survival at extremely low temperatures.


Assuntos
Quirópteros , Hibernação , Torpor , Animais , Quirópteros/fisiologia , Glucose/metabolismo , Hibernação/fisiologia , Adaptação Fisiológica/fisiologia
5.
Front Vet Sci ; 10: 1121296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152688

RESUMO

Disease conditions that involve multiple predisposing or contributing factors, or manifest as low performance and/or low-level mortality, can pose a diagnostic challenge that requires an interdisciplinary approach. Reaching a diagnosis may also be limited by a lack of available clinical profile parameter reference ranges to discriminate healthy fish from those affected by specific disease conditions. Here, we describe our experience investigating poorly performing rainbow trout (Oncorhynchus mykiss) in an intensive recirculation aquaculture, where reaching a final diagnosis of nephrocalcinosis was not as straightforward as one would wish. To list the issues making the diagnosis difficult, it was necessary to consider the creeping onset of the problem. Further diagnostic steps needed to ensure success included obtaining comparative data for fish blood profiles and water quality from both test and control aquacultural systems, excluding infections with salmonid pathogenic agents and evaluating necropsy findings. Major events in the pathophysiology of nephrocalcinosis could be reconstructed as follows: aquatic environment hyperoxia and hypercapnia → blood hypercapnia → blood acid-base perturbation (respiratory acidosis) → metabolic compensation (blood bicarbonate elevation and kidney phosphate excretion) → a rise in blood pH → calcium phosphate precipitation and deposition in tissues. This case highlights the need to consider the interplay between water quality and fish health when diagnosing fish diseases and reaching causal diagnoses.

6.
Viruses ; 15(5)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37243132

RESUMO

In the present study, we describe a natural outbreak of carp edema virus disease (CEVD) in koi carp, concentrating on clinical manifestation, gross and microscopic pathology, immunological parameters, viral diagnostics, and phylogenetic analysis. Examination of white blood cell parameters showed increased monocyte and decreased lymphocyte counts in CEV-affected fish compared to healthy control fish. Regarding immune system functioning, the present work shows, for the first time, enhanced phagocytic activity in CEV-affected fish. Respiratory burst of phagocytes was strongly increased in diseased fish, the increase being attributed to an increased phagocyte count rather than enhancement of their metabolic activity. The present work also newly shows histopathological changes in the pancreatic tissue of diseased koi.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Poxviridae , Poxviridae , Animais , Filogenia , Edema
7.
BMC Immunol ; 24(1): 7, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085747

RESUMO

BACKGROUND: Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS: We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS: The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.


Assuntos
Quirópteros , Hibernação , Lyssavirus , Vírus , Animais , Quirópteros/fisiologia , Transcriptoma
8.
Res Vet Sci ; 158: 34-40, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36913910

RESUMO

Paenibacillus larvae is the causative agent of American foulbrood (AFB), a devastating disease of honeybee larvae. In the Czech Republic, two large infested regions were recognised. This study aimed to analyse P. larvae strains occurring in the Czech Republic in the years 2016-2017 and to characterise the genetic structure of their population with the use of Enterobacterial Repetitive Intergenic Consensus genotyping (ERIC), multilocus sequence typing (MLST) and whole genome sequence (WGS) analysis. The results were complemented by the analysis of isolates collected in the year 2018 in areas of Slovakia located near the Czechia-Slovakia border. ERIC genotyping revealed that 78.9% of tested isolates belonged to the ERIC II genotype and 21.1% to ERIC I genotype. MLST showed six sequence types with ST10 and ST11 being the most frequent among isolates. Within six isolates we found discrepancies in correlations between MLST and ERIC genotypes. The use of MLST and WGS analysis of isolates revealed that each of the large infested geographic regions had its own dominating P. larvae strains. We assume that these strains represented primary sources of infection in the affected areas. In addition, the sporadic presence of strains identified by core genome analysis as genetically related was unveiled in geographically distant regions suggesting possible human-mediated transmission of AFB.


Assuntos
Paenibacillus larvae , Humanos , Abelhas , Estados Unidos , Animais , Paenibacillus larvae/genética , República Tcheca/epidemiologia , Eslováquia/epidemiologia , Tipagem de Sequências Multilocus/veterinária , Larva/genética , Larva/microbiologia , Genótipo , Genômica
9.
BMC Vet Res ; 19(1): 40, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36759833

RESUMO

BACKGROUND: North American bat populations have suffered severe declines over the last decade due to the Pseudogymnoascus destructans fungus infection. The skin disease associated with this causative agent, known as white-nose syndrome (WNS), is specific to bats hibernating in temperate regions. As cultured fungal isolates are required for epidemiological and phylogeographical studies, the purpose of the present work was to compare the efficacy and reliability of different culture approaches based on either skin swabs or wing membrane tissue biopsies for obtaining viable fungal isolates of P. destructans. RESULTS: In total, we collected and analysed 69 fungal and 65 bacterial skin swabs and 51 wing membrane tissue biopsies from three bat species in the Czech Republic, Poland and the Republic of Armenia. From these, we obtained 12 viable P. destructans culture isolates. CONCLUSIONS: Our results indicated that the efficacy of cultures based on wing membrane biopsies were significantly higher. Cultivable samples tended to be based on collections from bats with lower body surface temperature and higher counts of UV-visualised lesions. While cultures based on both skin swabs and wing membrane tissue biopsies can be utilised for monitoring and surveillance of P. destructans in bat populations, wing membrane biopsies guided by UV light for skin lesions proved higher efficacy. Interactions between bacteria on the host's skin also appear to play an important role.


Assuntos
Quirópteros , Hibernação , Dermatopatias , Animais , Quirópteros/microbiologia , Meios de Cultura , Raios Ultravioleta , Reprodutibilidade dos Testes , Pele/patologia , Dermatopatias/veterinária , Síndrome
10.
Front Vet Sci ; 9: 978756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157196

RESUMO

Heterothermy, as a temperature-dependent physiological continuum, may affect host-pathogen interactions through modulation of immune responses. Here, we evaluated proliferation and functional performance of a macrophage cell line established from the greater mouse-eared (Myotis myotis) bat at 8, 17.5, and 37°C to simulate body temperatures during hibernation, daily torpor and euthermia. Macrophages were also frozen to -20°C and then examined for their ability to proliferate in the immediate post-thaw period. We show that bat macrophages can proliferate at lower temperatures, though their growth rate is significantly slower than at 37°C. The cells differed in their shape, size and ability to attach to the plate surface at both lower temperatures, being spheroidal and free in suspension at 8°C and epithelial-like, spindle-shaped and/or spheroidal at 17.5°C. While phagocytosis at temperatures of 8 and 17.5°C amounted to 85.8 and 83.1% of the activity observed at 37°C, respectively, full phagocytic activity was restored within minutes of translocation into a higher temperature. Bat-derived macrophages were also able to withstand temperatures of -20°C in a cryoprotectant-free cultivation medium and, in the immediate post-thaw period, became viable and were able to proliferate. Our in vitro data enhance understanding of macrophage biology.

11.
Emerg Microbes Infect ; 11(1): 2211-2213, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36039905

RESUMO

Kidney samples from 300 bat cadavers from the Czech and Slovak Republics were tested for Leptospira DNA using PCR and sequencing of three genes (lipL32, flab, and 16S ribosomal RNA). Overall detection rate was 4.7% and two bat species (Myotis myotis and Nyctalus noctula) were PCR-positive for at least one gene. Detected Leptospira sequences were similar to L. interrogans and L. borgpetersenii, and included a potentially novel species related to L. weilii.


Assuntos
Quirópteros , Leptospira , Leptospirose , Animais , Cadáver , República Tcheca/epidemiologia , Leptospira/genética , Leptospirose/epidemiologia , Leptospirose/veterinária , Filogenia , RNA Ribossômico 16S/genética , Eslováquia/epidemiologia
12.
J Virol ; 96(14): e0060822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862713

RESUMO

Bats are natural reservoirs of numerous coronaviruses, including the potential ancestor of SARS-CoV-2. Knowledge concerning the interaction between coronaviruses and bat cells is sparse. We investigated the ability of primary cells from Rhinolophus and Myotis species, as well as of established and novel cell lines from Myotis myotis, Eptesicus serotinus, Tadarida brasiliensis, and Nyctalus noctula, to support SARS-CoV-2 replication. None of these cells were permissive to infection, not even the ones expressing detectable levels of angiotensin-converting enzyme 2 (ACE2), which serves as the viral receptor in many mammalian species. The resistance to infection was overcome by expression of human ACE2 (hACE2) in three cell lines, suggesting that the restriction to viral replication was due to a low expression of bat ACE2 (bACE2) or the absence of bACE2 binding in these cells. Infectious virions were produced but not released from hACE2-transduced M. myotis brain cells. E. serotinus brain cells and M. myotis nasal epithelial cells expressing hACE2 efficiently controlled viral replication, which correlated with a potent interferon response. Our data highlight the existence of species-specific and cell-specific molecular barriers to viral replication in bat cells. These novel chiropteran cellular models are valuable tools to investigate the evolutionary relationships between bats and coronaviruses. IMPORTANCE Bats are host ancestors of several viruses that cause serious disease in humans, as illustrated by the ongoing SARS-CoV-2 pandemic. Progress in investigating bat-virus interactions has been hampered by a limited number of available bat cellular models. We have generated primary cells and cell lines from several bat species that are relevant for coronavirus research. The various permissivities of the cells to SARS-CoV-2 infection offered the opportunity to uncover some species-specific molecular restrictions to viral replication. All bat cells exhibited a potent entry-dependent restriction. Once this block was overcome by overexpression of human ACE2, which serves at the viral receptor, two bat cell lines controlled well viral replication, which correlated with the inability of the virus to counteract antiviral responses. Other cells potently inhibited viral release. Our novel bat cellular models contribute to a better understanding of the molecular interplays between bat cells and viruses.


Assuntos
Quirópteros , SARS-CoV-2 , Replicação Viral , Enzima de Conversão de Angiotensina 2/genética , Animais , Quirópteros/virologia , Humanos , Receptores Virais/metabolismo , SARS-CoV-2/fisiologia , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
J Fish Dis ; 45(10): 1409-1417, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35708022

RESUMO

Understanding disease aetiology and pathologic mechanisms is essential for fish health evaluation. Carp edema virus (CEV) is the causative agent of a disease (CEVD) responsible for high mortality rates in both wild and cultured common carp Cyprinus carpio. Inspection of two carp specimens from a pond with high fish mortality revealed CEV infection in both the host and its ectoparasite (Argulus foliaceus). In addition to flavobacteria, well known to be associated with gill lesions, we found that free-living eukaryotes (amoebae and ciliates) and a temporary parasite (Ichthyobodo spp.) colonizing the gills may also contribute to alterations in gill structure and/or function, either directly, through firm (Ichthyobodo) or weak (amoebae) attachment of trophozoites to the gill epithelium, or indirectly, through carriage of pathogenic bacteria. Bacterial assemblages rich in families and genera, with predominance of Cetobacterium spp. in low-intensity alteration of the gill tissue and of Flavobacterium spp. in gills with extensive necrotic lesions, were detected in gills and within the cytoplasm of associated amoebae using high-throughput sequencing. Quantitative PCR indicated F. swingsii as the prevailing flavobacterial species within amoebae from less affected gills and F. psychrophilum within amoebae from extensively affected gills. This case study suggests that eukaryotic organisms as part of the gill pathobiome may also contribute to irreversible gill lesions seen in CEVD. Emphasizing the complexity of mutual relationships between bacterial assemblages and eukaryotic co-pathogens, further studies regarding factors that trigger pathology and influence severity in the CEV-positive carp are needed.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Poxviridae , Poxviridae , Animais , Edema , Doenças dos Peixes/microbiologia , Flavobacterium , Brânquias/patologia , Infecções por Poxviridae/veterinária
14.
Microorganisms ; 10(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35630470

RESUMO

Co-existence of bats with a wide range of infectious agents relates to their co-evolutionary history and specific physiology. Here, we examined blood samples collected during hibernation and the post-hibernation period to assess the influence of trypanosomes and babesias on the health status of 50 Noctule bats (Nyctalus noctula) using nested PCR. The impact of blood parasites on health was assessed by analysis of haematology and blood chemistry parameters in 21 bats. Prevalence of trypanosomes (Trypanosoma dionisii and T. vespertilionis) and babesia (Babesia vesperuginis) was 44% and 8%, respectively. Analysis of blood parameters indicated impact of babesia on acid-base balance. Blood chemistry parameters showed a significant decrease in total dissolved carbon dioxide and bicarbonate, increased anion gap, and no change in blood pH, suggesting compensated metabolic acidosis. Adverse effects of babesia were only apparent in hibernating bats. Our results suggest differences in the pathogenicity of trypanosomes and babesia in bats. While trypanosomes in general had no significant impact on the health status, we observed alterations in the blood acid-base balance in Babesia-infected bats during hibernation. Despite being infected, Babesia-positive bats survived hibernation without showing any clinical signs.

15.
BMC Zool ; 7(1): 18, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37170295

RESUMO

BACKGROUND: The success of animal reproduction is impacted by a trade-off between energetic costs and mortality associated with immediate vs. future reproductive attempts. The reproductive strategies of European insectivorous bats differ from common mammalian standards due to the use of delayed fertilisation. Phenology of bat reproduction, including length of pregnancy, which may vary in the same species at different latitudes, between years at the same site or between individuals within a colony, is influenced by ecological conditions. To assess factors influencing the course of pregnancy, we evaluated levels of blood progesterone in 20 female common noctule bats Nyctalus noctula. The bats were individually tagged and randomly divided into two groups with different hibernation ending points (i.e. a control group vs. a treatment group with one-week longer hibernation). Following emergence from hibernation, the bats were kept in a wooden box at a stable temperature of 22 °C. RESULTS: The majority of females gave birth to a single neonate (65%), but one female aborted her pups 2 days before the first successful births of other females. Based on development of progesterone concentration, we were able to define a number of different reproduction strategies, i.e. females with single offspring or twins, and females with supposed resorption of one embryo (embryonic mortality after implantation of the developing fertilised egg). Progesterone levels were much higher in females with two embryos during the first part of gestation and after birth. Progesterone levels were at their highest mid-gestation, with no difference between females carrying one or two foetuses. Length of gestation differed significantly between the two groups, with the longer hibernation (treatment) group having a roughly two-day shorter gestation period. CONCLUSIONS: Female N. noctula are able to manipulate their litter size to balance immediate and future reproduction success. The estimated gestation length of approx. 49-days appears to be standard for N. noctula, with females optimising their thermoregulatory behaviour to keep the length of gestation as close to the standard as possible.

16.
J Therm Biol ; 101: 103107, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34879908

RESUMO

During the season of hibernation, temperate bats alternate between prolonged bouts of torpor with reduced body temperature and short arousals with a return to normothermy. Hibernating bats are sensitive to non-tactile stimuli and arouse following changes in microclimatic conditions or disturbance from other bats, potential predators, or humans. Here, we used temperature data loggers to register the skin temperature of 38 Myotis myotis bats over two winters (between January and March), during which regular visits were made to the hibernaculum. Two kinds of arousal were observed, normothermic (Tsk > 25 °C) and cold (Tsk < 15 °C). Although bats responded to the presence of a researcher by arousals of both kinds, cold arousals were more frequent (63.8%). We found that mass loss was not affected by the number of disturbances, however it was in positive relationship with the mass at the beginning of the observation and differed between sex and age categories. Furthermore normothermic bats crawling among cluster-mates initiated arousal cascades, which mainly consisted of cold arousals. We failed to detect any effect of age or sex on the number of arousals initiated by normothermic individuals. Warming by only a few degrees requires less energy than a normothermic arousal and we propose it is sufficient to activate the sensory system in order to assess the relevance of external stimuli. Our results indicate that cold arousals reflect a physiological and behavioural adaptation aimed at avoiding the energetic costs of disturbance that can lead to depletion of fat reserves.


Assuntos
Nível de Alerta/fisiologia , Quirópteros/fisiologia , Temperatura Baixa , Animais , Metabolismo Energético , Feminino , Hibernação , Masculino , Temperatura Cutânea
17.
Zoonoses Public Health ; 68(8): 917-925, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34379883

RESUMO

European brown hare (Lepus europaeus Pallas 1778) is a broadly distributed lagomorph species in Europe, recognized as a host for Ixodes ricinus and reservoir of a wide range of pathogens with zoonotic potential. Even though Lepus europaeus represents an important game animal in Central Europe, the data available on Anaplasma phagocytophilum in this lagomorph are scarce. In this study, three populations of brown hare from distinct localities in the Czech Republic were analysed for the presence of Anaplasma phagocytophilum DNA. We used standard qPCR, targeting the msp2 gene and adapted the same assay also for digital droplet PCR. Out of 91 samples, these two methods identified 9 and 12 as positive, respectively. For taxonomic analysis, we amplified the groEL gene from five of six samples that were found positive by both methods. In phylogenetic analyses, this haplotype belongs to ecotype 1, and to the subclade with isolates from cervids and I. ricinus. Our findings underline the importance of correct result interpretation and positivity cut-off set-up for different detection methods of A. phagocytophilum. This bacterium is characterized by a high intraspecific variability and highly sensitive detection itself, is not enough. Detailed molecular typing is necessary to define the zoonotic potential of different strains and their natural reservoirs.


Assuntos
Anaplasma phagocytophilum , Lebres , Ixodes , Anaplasma phagocytophilum/genética , Animais , Europa (Continente) , Ixodes/microbiologia , Filogenia
18.
Front Vet Sci ; 8: 679970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095283

RESUMO

Significant mortalities associated with emerging viral diseases are challenging the economy of common carp aquaculture. As such, there is an increased need to disentangle how infected fish cope with progressive disease pathology and lose the ability for homeostatic maintenance of key physiological parameters. A natural carp edema virus (CEV) infection outbreak at a carp fish farm provided an opportunity to examine diseased and healthy carp in the same storage pond, thereby contributing to our better understanding of CEV disease pathophysiology. The disease status of fish was determined using PCR-based virus identification combined with analysis of gill pathology. Compared with healthy control carp, the blood chemistry profile of CEV-infected fish revealed major disruptions in electrolyte and acid-base balance (i.e., hyponatraemia, hypochloraemia, hyperphosphatemia, elevated pH, base excess, and anion gap and decreased partial dissolved carbon dioxide). In addition, we recorded hyperproteinaemia, hyperalbuminaemia, hypotonic dehydration, endogenous hyperammonaemia, and decreased lactate along with increased creatinine, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. Red blood cell associated hematology variables were also elevated. The multivariate pattern of responses for blood chemistry variables (driven by sodium, pH, partial dissolved carbon dioxide, ammonia, and albumin in the principal component analysis) clearly discriminated between CEV-infected and control carp. To conclude, we show that CEV infection in carp exerts complex adverse effects and results in severe metabolic disturbance due to the impaired gill respiratory and excretory functioning.

19.
J Fish Dis ; 44(8): 1147-1153, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33837562

RESUMO

Diagnostic accuracy of pathogen detection depends upon the selection of suitable tests. Problems can arise when the selected diagnostic test gives false-positive or false-negative results, which can affect control measures, with consequences for the population health. The aim of this study was to compare sensitivity of different diagnostic methods IHC, PCR and qPCR detecting Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease in salmonid fish and as a consequence differences in disease prevalence. We analysed tissue from 388 salmonid specimens sampled from a recirculating system and rivers in the Czech Republic. Overall prevalence of T. bryosalmonae was extremely high at 92.0%, based on positive results of at least one of the above-mentioned screening methods. IHC resulted in a much lower detection rate (30.2%) than both PCR methods (qPCR32: 65.4%, PCR: 81.9%). While qPCR32 produced a good match with IHC (60.8%), all other methods differed significantly (p < .001) in the proportion of samples determined positive. Both PCR methods showed similar sensitivity, though specificity (i.e., the proportion of non-diseased fish classified correctly) differed significantly (p < .05). Sample preservation method significantly (p < .05) influenced the results of PCR, with a much lower DNA yield extracted from paraffin-embedded samples. Use of different methods that differ in diagnostic sensitivity and specificity resulted in random and systematic diagnosis errors, illustrating the importance of interpreting the results of each method carefully.


Assuntos
Testes Diagnósticos de Rotina/veterinária , Doenças dos Peixes/diagnóstico , Myxozoa/isolamento & purificação , Oncorhynchus mykiss , Doenças Parasitárias em Animais/diagnóstico , Parasitologia/métodos , Truta , Animais , Aquicultura , República Tcheca/epidemiologia , Testes Diagnósticos de Rotina/métodos , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Doenças Parasitárias em Animais/epidemiologia , Doenças Parasitárias em Animais/parasitologia , Prevalência , Rios
20.
Transbound Emerg Dis ; 68(6): 3089-3095, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33527732

RESUMO

Leptospirosis is a bacterial zoonotic infection of worldwide occurrence. Bats, like other mammalian reservoirs, may be long-term carriers that maintain endemicity of infection and shed viable leptospires in urine. Direct and/or indirect contact with these Leptospira shedders is the main risk factor as regards public health concern. However, knowledge about bat leptospirosis in the Palearctic Region, and in Europe in particular, is poor. We collected urine from 176 specimens of 11 bat species in the Czech Republic, Poland, Republic of Armenia and the Altai Region of Russia between 2014 and 2019. We extracted DNA from the urine samples to detect Leptospira spp. shedders using PCR amplification of the 16S rRNA and LipL32 genes. Four bat species (Barbastella barbastellus n = 1, Myotis bechsteinii n = 1, Myotis myotis n = 24 and Myotis nattereri n = 1) tested positive for Leptospira spp., with detected amplicons showing 100% genetic identity with pathogenic Leptospira interrogans. The site- and species-specific prevalence range was 0%-24.1% and 0%-20%, respectively. All bats sampled in the Republic of Armenia and Russia were negative. Given the circulation of pathogenic leptospires in strictly protected Palearctic bat species and their populations, non-invasive and non-lethal sampling of urine for molecular Leptospira spp. detection is recommended as a suitable surveillance and monitoring strategy. Moreover, our results should raise awareness of this potential disease risk among health professionals, veterinarians, chiropterologists and wildlife rescue workers handling bats, as well as speleologists and persons cleaning premises following bat infestation.


Assuntos
Quirópteros , Leptospira , Leptospirose , Animais , Leptospira/genética , Leptospirose/epidemiologia , Leptospirose/veterinária , Reação em Cadeia da Polimerase/veterinária , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...